Sports training improves motor function after spinal cord injury by regulating microtubule dynamics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mengjie Huang, Yijie Li, Xiaoxie Liu, Yue Tang, Xiaohuan Wang, Yanyan Yang, Hong Zeng, Mouwang Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 133.54042 Astrology

Thông tin xuất bản: Netherlands : Biochimica et biophysica acta. Molecular basis of disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 188347

Spinal cord injury (SCI) often results in persistent disabilities, primarily due to deficient axon regeneration and irreversible neuronal loss. Sports training is a widely adopted intervention in clinical practice and research to promote axonal sprouting and synaptic plasticity, thereby improving motor function after SCI. However, the precise mechanisms by which sports training improves motor function after SCI remain incompletely understood. We established a rat model of T9 spinal cord contusion and initiated sports training 1 week after SCI, which continued for eight weeks. Using transcriptome sequencing validated through western blotting and immunostaining, we demonstrated that sports training effectively reduced neuroinflammation and prevented neuronal loss. Furthermore, we discovered that sports training changed neuronal microtubule dynamics, facilitating axon regeneration and synaptic plasticity and ultimately improving motor function. These findings indicate that the modulation of neuronal microtubule dynamics may represent a critical mechanism through which sports training improves motor function after SCI.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH