Inhibitors of tubulin polymerization represent a promising therapeutic approach for the treatment of solid tumors. Molecules that bind to the colchicine site are of interest as they can function with a dual mechanism of action as both potent antiproliferative agents and tumor-selective vascular disrupting agents (VDAs). One such example is a 2-aryl-3-aroyl-indole molecule (OXi8006) from our laboratory that demonstrates potent inhibition of tubulin polymerization and strong antiproliferative activity (cytotoxicity) against a variety of human cancer cell lines. A water-soluble prodrug OXi8007, synthesized from OXi8006, demonstrates in vivo disruption of tumor-associated microvessels in several tumor types (mouse models). The molecular framework of OXi8006 inspired a series of fourteen new 2-aryl-3-aroyl-indole analogues that incorporated various functional group modifications on both the indole core and the aroyl ring. Electron withdrawing and donating groups at the mono-substituted 3' position and the di-substituted 3',5' positions were all accommodated while maintaining inhibition of tubulin polymerization (IC