Defect Engineering of Metal-Based Atomically Thin Materials for Catalyzing Small-Molecule Conversion Reactions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shixue Dou, Yuhai Dou, Juanjuan Huo, Huakun Liu, Chao Wu, Ding Yuan

Ngôn ngữ: eng

Ký hiệu phân loại: 070.48346 Journalism

Thông tin xuất bản: Germany : Advanced materials (Deerfield Beach, Fla.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 189108

Recently, metal-based atomically thin materials (M-ATMs) have experienced rapid development due to their large specific surface areas, abundant electrochemically accessible sites, attractive surface chemistry, and strong in-plane chemical bonds. These characteristics make them highly desirable for energy-related conversion reactions. However, the insufficient active sites and slow reaction kinetics leading to unsatisfactory electrocatalytic performance limited their commercial application. To address these issues, defect engineering of M-ATMs has emerged to increase the active sites, modify the electronic structure, and enhance the catalytic reactivity and stability. This review provides a comprehensive summary of defect engineering strategies for M-ATM nanostructures, including vacancy creation, heteroatom doping, amorphous phase/grain boundary generation, and heterointerface construction. Introducing recent advancements in the application of M-ATMs in electrochemical small molecule conversion reactions (e.g., hydrogen, oxygen, carbon dioxide, nitrogen, and sulfur), which can contribute to a circular economy by recycling molecules like H
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH