Self-Wrinkling-Induced Mechanically Adaptive Patterned Surface of Photocuring Coating for Abrasion Resistance.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaxin Gao, Xuesong Jiang, Jin Li, Kexing Li, Tianjiao Ma, Xiaodong Ma, Yi Zhu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Advanced materials (Deerfield Beach, Fla.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 189216

Providing mechanically adaptive performance to surfaces is significant in preserving materials from damage in variable environments, however, it has rarely been studied. Inspired by the mechanically adaptive behaviors of the surface microstructure on the carapace of desert scorpions and bark of desert tamarisks, a self-wrinkled mechanically adaptive patterned surface (SWMAPS) using one-step UV-curing and self-wrinkling technique is reported. Because of the fluorinated polyurethane photo-initiator formed by self-assembly at the top surface, UV-induced photo-crosslinking can spontaneously generate a gradient-crosslinked structure and wrinkled patterns with different morphology. With mechanically adaptive behavior originating from self-assembled fluorinated polyurethane photo-initiators, gradient-crosslinked structures, and self-wrinkled patterns, the SWMAPS remains intact under 600 cycles of reciprocating friction with little variation in the coefficient of friction and water contact angle. The SWMAPS prepared by programmable UV irradiation maintains integral under 1800 cycles of reciprocating friction with a stable friction coefficient. Furthermore, the SWMAPS is fabricated with high efficiency, regulated morphology, good surface mechanical properties, and self-recovery performance. This strategy establishes a new field of mechanically adaptive patterned surfaces, which significantly improves durability and prolongs the service life of materials in variable environments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH