Knee osteoarthritis severity detection using deep inception transfer learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Muhammad Muzammil Azad, Heung Soo Kim, Muhammad Sohail

Ngôn ngữ: eng

Ký hiệu phân loại: 271.6 *Passionists and Redemptorists

Thông tin xuất bản: United States : Computers in biology and medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 189392

 Osteoarthritis (OA) is a prevalent condition resulting in physical limitations. Early detection of OA is critical to effectively manage this condition. However, the diagnosis of early-stage arthritis remains challenging. The Kellgren and Lawrence (KL) grading system is a common method that is accepted worldwide, uses five grades to classify the severity of OA, and relies on the ability of the orthopedist to accurately interpret radiograph images. To improve the accuracy of radiograph image interpretation, artificial intelligence-assisted models have been developed that include shallow or deep learning approaches and multi-step techniques
  however, their accuracy remains variable. This work proposes a transfer learning approach using an InceptionV3-based model fine-tuned on the Osteoarthritis Initiative dataset, and aims to enhance the identification of OA severity levels through dual-stage preprocessing and convolutional neural networks for feature extraction. The fine-tuned IV3 (FT-IV3) model outperformed the IV3 model with training, validation, and testing accuracies of (96.33, 93.82, and 92.25) %, compared to IV3 accuracies of (91.64, 82.04, and 86.20) %, respectively. Additionally, Cohen's Kappa value for the FT-IV3 model (90.69 %) exceeds that of the IV3 model (83.15 %), indicating a better diagnosis of OA severity. This improvement allows the FT-IV3 model to effectively classify moderate and severe-grade OA.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH