Predicting miscibility in binary compounds: a machine learning and genetic algorithm study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huafeng Dong, Chiwen Feng, Yanwei Liang, Huaijun Sun, Jiaying Sun, Renhai Wang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Physical chemistry chemical physics : PCCP , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 189470

The combination of data science and materials informatics has significantly propelled the advancement of multi-component compound synthesis research. This study employs atomic-level data to predict miscibility in binary compounds using machine learning, demonstrating the feasibility of such predictions. We have integrated experimental data from the Materials Project (MP) database and the Inorganic Crystal Structure Database (ICSD), covering 2346 binary systems. We applied a random forest classification model to train the constructed dataset and analyze the key factors affecting the miscibility of binary systems and their significance while predicting binary systems with high synthetic potential. By employing advanced genetic algorithms on the Co-Eu system, we discovered three novel thermodynamically stable phases, CoEu
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH