UNLABELLED: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown. We conducted and compared tandem lab and field qSIP to quantify the assimilation of IMPORTANCE: Soil microbes are responsible for critical biogeochemical processes in natural and agricultural ecosystems. Despite their importance, the functional traits of most soil organisms remain woefully under-characterized, limiting our ability to understand how microbial populations influence the transformation of elements such as nitrogen (N) in soil. Quantitative stable isotope probing (qSIP) is a powerful tool to measure the traits of individual taxa. This method has rarely been applied in the field or with