Deoxynivalenol, a hazardous mycotoxin, poses significant health risks to humans and animals, necessitating highly sensitive detection methods due to its low abundance in food. Herein, we present a colorimetric sensing strategy for deoxynivalenol detection based on the inhibitory effect of silver ions on the peroxidase-like activity of Ni@Pt nanoparticles. Silver ions adsorb onto the surface of Ni@Pt nanoparticles, blocking the active site and consequently impeding their catalytic activity. By integrating antigen-antibody interactions with the biotin-streptavidin system, a specific aptamer can be introduced to chelate silver ions, thereby modulating the activity of Ni@Pt nanoparticles for signal readout through the 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide system. This method achieves a detection limit of 47.4 pg/mL, surpassing traditional enzyme-linked immunosorbent assays and rivaling the sensitivity of precision instrumental analysis. Furthermore, this colorimetric method demonstrates robust recovery and has been successfully challenged deoxynivalenol detection in infant milk powder samples, highlighting its potential for practical applications.