Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jinwen Chen, Yuheng He, Feng Jiang, Tao Liu, Zongchao Liu, Xin Peng, Chao Song, Zhangchao Wei, Chaorui Yao, Daqian Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 523.019 Molecular, atomic, nuclear physics

Thông tin xuất bản: Netherlands : Biochimica et biophysica acta. Molecular basis of disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 190845

Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP. Recent research has revealed that mitochondrial dysfunction is a significant factor in the onset and progression of OP. By regulating bone marrow mesenchymal stem cell differentiation through various signaling pathways and cytokines, abnormal mitochondrial energy metabolism brought on by oxidative stress processes impacts osteoblast and osteoclast proliferation and differentiation, causing an imbalance in bone metabolism that ultimately results in OP. Therefore, one possible method to prevent and manage OP may be to use mitochondria as a carrier to trigger osteogenic differentiation of bone marrow mesenchymal stem cells from mitochondrial energy consumption, oxidative stress, autophagy, and osteoclast death. In order to offer some theoretical references and therapeutic approaches for the clinical prevention and treatment of OP, we will examine the pathophysiology of OP from mitochondrial dysfunction in this work.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH