SEPO-FI: Deep-learning based software to calculate fusion index of muscle cells.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuan H Brad Kim, Jungseok Choi, Nayoung Choi, Sang-Hwan Hyun, Soyoung Jang, Ji-Hoon Jeong, Kyungchang Jeong, Gyuchan Jo, Euijong Lee, Gyutae Park, Sanghun Park, Hanbit Seo, Young-Duk Seo

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Computers in biology and medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 191016

The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index. The experimental results demonstrate that the proposed process achieves significantly higher performance in cell nuclei detection and classification, with an F1-score of 0.953, whereas traditional object detection methods achieve less than 0.5. In addition, the fusion index obtained using the proposed method is closely aligned with the human-assessed values, showing minimal discrepancy and strong agreement with human evaluations. This process is incorporated into the development of "SEPO-FI" as public software, automating cell detection and classification to enable effective fusion index calculation and broaden access to this methodology within the scientific community.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH