Single-cell RNA sequencing and machine learning provide candidate drugs against drug-tolerant persister cells in colorectal cancer.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yosui Nojima, Takashi Suzuki, Ryoji Yao

Ngôn ngữ: eng

Ký hiệu phân loại: 577.23 *Seasons

Thông tin xuất bản: Netherlands : Biochimica et biophysica acta. Molecular basis of disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 191099

Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging. We used single-cell RNA sequencing (scRNA-Seq) data and machine learning (ML) models to identify DTP cells in patient-derived organoids (PDOs) and computationally screened candidate drugs targeting these cells in familial adenomatous polyposis (FAP), associated with a high risk of colorectal cancer. Three PDOs (benign and malignant tumor organoids and a normal organoid) were evaluated using scRNA-Seq. ML models constructed based on public scRNA-Seq data classified DTP versus non-DTP cells. Candidate drugs for DTP cells in a malignant tumor organoid were identified from public drug sensitivity data. From FAP scRNA-Seq data, a specific TC1 cell cluster in tumor organoids was identified. The ML model identified up to 36 % of TC1 cells as DTP cells, a higher proportion than those for other clusters. A viability assay using a malignant tumor organoid demonstrated that YM-155 and THZ2 exert synergistic effects with trametinib. The constructed ML model is effective for DTP cell identification based on scRNA-Seq data for FAP and provides candidate treatments. This approach may improve DTP cell targeting in the treatment of colorectal and other cancers.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH