Previously, we demonstrated the promise of aerogels for the repair of nerve injuries as neural cells extend longer processes (neurites) when grown on aerogels compared to a control surface. We also reported that the aerogel surface topography influenced neurite length. Neurite extension may be boosted by depositing collagen on the aerogel prior to plating the cells. Indeed, collagen has many applications in biomaterials for nerve repair because it profoundly influences cellular properties such as shape and motility. Using collagen to enhance neurite extension requires knowing the effect of collagen deposition on the aerogel surface profile as well as how the aerogel's surface topography influences collagen organization into fibers or films. Herein, we have examined by SEM and profilometry the reciprocal relationship between collagen micromorphology and aerogel surface features including pore diameters, surface roughness, and Young's modulus (