Rice (Oryza sativa L.) is a staple food for more than half of the human population. Rice plants are cultivated in several different environments, and face various abiotic stresses, including nutritional imbalance in soils. The ionome, the inorganic composition of an organism, is known to be tightly regulated, as changes in concentration of one element affect concentrations of others. Iron (Fe) is an essential element that is involved in redox reactions, nitrogen metabolism and chlorophyll synthesis. The hallmark of Fe deficiency in plants is leaf chlorosis, a phenotype known to be alleviated by deficiencies of other elements, such as phosphorus (P). Aluminum (Al) is abundant in soils and limits plant growth in acidic soils. Despite its well-established detrimental effects, Al has been proposed to have a positive effect on growth for some species, but little is known about this phenomenon. Here we aim to understand whether Al affects Fe homeostasis in rice. We found that Al alleviated Fe deficiency-induced chlorosis. +Al-Fe treatment decreased expression of Fe deficiency marker genes and partially recovered photosynthesis. We also observed that Al induced expression of a P deficiency marker gene, and addition of excess P to nutrient solution reversed effects of Al on chlorosis. Our data show that Al alleviates Fe deficiency-induced chlorosis, and suggests that this occurs indirectly by inducing P deficiency in leaves.