Crystal and conformational polymorphisms play crucial roles in the physical and chemical properties of materials, impacting their stability, solubility, and bioavailability, which are essential for various applications in pharmaceuticals, materials science, and chemistry. Despite their significance, the structural analysis of these polymorphisms, particularly conformational polymorphisms, remains challenging due to the limited methodology that provides sufficient resolution for microcrystalline variants of polymorphs. Three-dimensional electron diffraction (3D ED) is an emerging technique with significant potential for elucidating the microcrystal structures of functional organic molecules, pharmaceuticals, and biomolecules. Despite this potential, there are limited instances of 3D ED structures for small molecules exhibiting the lowest crystallographic symmetry with a preferred orientation and possibly conformational variations of constituent molecules. A novel organic semiconductor, Ph-anti-benzothieno[5,6-