Out-of-distribution generalization via composition: A lens through induction heads in Transformers.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiajun Song, Zhuoyan Xu, Yiqiao Zhong

Ngôn ngữ: eng

Ký hiệu phân loại: 636.0885 Animal husbandry

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 193469

Large language models (LLMs) such as GPT-4 sometimes appear to be creative, solving novel tasks often with a few demonstrations in the prompt. These tasks require the models to generalize on distributions different from those from training data-which is known as out-of-distribution (OOD) generalization. Despite the tremendous success of LLMs, how they approach OOD generalization remains an open and underexplored question. We examine OOD generalization in settings where instances are generated according to hidden rules, including in-context learning with symbolic reasoning. Models are required to infer the hidden rules behind input prompts without any fine-tuning. We empirically examined the training dynamics of Transformers on a synthetic example and conducted extensive experiments on a variety of pretrained LLMs, focusing on a type of component known as induction heads. We found that OOD generalization and composition are tied together-models can learn rules by composing two self-attention layers, thereby achieving OOD generalization. Furthermore, a shared latent subspace in the embedding (or feature) space acts as a bridge for composition by aligning early layers and later layers, which we refer to as the common bridge representation hypothesis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH