The Transfer Performance of Economic Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Isaiah Andrews, Drew Fudenberg, Lihua Lei, Annie Liang, Chaofeng Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194024

Economists often estimate models using data from a particular domain, e.g. estimating risk preferences in a particular subject pool or for a specific class of lotteries. Whether a model's predictions extrapolate well across domains depends on whether the estimated model has captured generalizable structure. We provide a tractable formulation for this "out-of-domain" prediction problem and define the transfer error of a model based on how well it performs on data from a new domain. We derive finite-sample forecast intervals that are guaranteed to cover realized transfer errors with a user-selected probability when domains are iid, and use these intervals to compare the transferability of economic models and black box algorithms for predicting certainty equivalents. We find that in this application, the black box algorithms we consider outperform standard economic models when estimated and tested on data from the same domain, but the economic models generalize across domains better than the black-box algorithms do.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH