Fair allocation of a multiset of indivisible items

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pranay Gorantla, Kunal Marwaha, Santhoshini Velusamy

Ngôn ngữ: eng

Ký hiệu phân loại: 529.76 Chronology

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194059

 Comment: 34 pages, 6 figures, 1 table, 1 algorithmWe study the problem of fairly allocating a multiset $M$ of $m$ indivisible items among $n$ agents with additive valuations. Specifically, we introduce a parameter $t$ for the number of distinct types of items and study fair allocations of multisets that contain only items of these $t$ types, under two standard notions of fairness: 1. Envy-freeness (EF): For arbitrary $n$, $t$, we show that a complete EF allocation exists when at least one agent has a unique valuation and the number of items of each type exceeds a particular finite threshold. We give explicit upper and lower bounds on this threshold in some special cases. 2. Envy-freeness up to any good (EFX): For arbitrary $n$, $m$, and for $t\le 2$, we show that a complete EFX allocation always exists. We give two different proofs of this result. One proof is constructive and runs in polynomial time
  the other is geometrically inspired.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH