von Mises-Fisher distributions and their statistical divergence

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Toru Kitagawa, Jeff Rowley

Ngôn ngữ: eng

Ký hiệu phân loại: 372.79 Elementary education

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194064

Comment: 28 pages, 2 figuresThe von Mises-Fisher family is a parametric family of distributions on the surface of the unit ball, summarised by a concentration parameter and a mean direction. As a quasi-Bayesian prior, the von Mises-Fisher distribution is a convenient and parsimonious choice when parameter spaces are isomorphic to the hypersphere (e.g., maximum score estimation in semi-parametric discrete choice, estimation of single-index treatment assignment rules via empirical welfare maximisation, under-identifying linear simultaneous equation models). Despite a long history of application, measures of statistical divergence have not been analytically characterised for von Mises-Fisher distributions. This paper provides analytical expressions for the $f$-divergence of a von Mises-Fisher distribution from another, distinct, von Mises-Fisher distribution in $\mathbb{R}^p$ and the uniform distribution over the hypersphere. This paper also collect several other results pertaining to the von Mises-Fisher family of distributions, and characterises the limiting behaviour of the measures of divergence that we consider.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH