Simple Models and Biased Forecasts

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pooya Molavi

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194406

This paper proposes a framework in which agents are constrained to use simple models to forecast economic variables and characterizes the resulting biases. It considers agents who can only entertain state-space models with no more than d states, where d measures the intertemporal complexity of a model. Agents are boundedly rational in that they can only consider models that are too simple to capture the true process, yet they use the best model among those considered. Using simple models adds persistence to forward-looking decisions and increases the comovement among them. This mechanism narrows the gap between business-cycle theory and data. In a new neoclassical synthesis model, the assumption that agents use simple models fits the data much better than the rational-expectations hypothesis. Moreover, simple models simultaneously resolve the Barro-King and forward guidance puzzles while improving the propagation of TFP shocks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH