Forecasting US Inflation Using Bayesian Nonparametric Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Todd E Clark, Florian Huber, Gary Koop, Massimiliano Marcellino

Ngôn ngữ: eng

Ký hiệu phân loại: 332.46 Monetary policy

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194540

The relationship between inflation and predictors such as unemployment is potentially nonlinear with a strength that varies over time, and prediction errors error may be subject to large, asymmetric shocks. Inspired by these concerns, we develop a model for inflation forecasting that is nonparametric both in the conditional mean and in the error using Gaussian and Dirichlet processes, respectively. We discuss how both these features may be important in producing accurate forecasts of inflation. In a forecasting exercise involving CPI inflation, we find that our approach has substantial benefits, both overall and in the left tail, with nonparametric modeling of the conditional mean being of particular importance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH