Bounds for Bias-Adjusted Treatment Effect in Linear Econometric Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Deepankar Basu

Ngôn ngữ: eng

Ký hiệu phân loại: 330.18 Economics

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 194765

In linear econometric models with proportional selection on unobservables, omitted variable bias in estimated treatment effects are real roots of a cubic equation involving estimated parameters from a short and intermediate regression. The roots of the cubic are functions of $\delta$, the degree of selection on unobservables, and $R_{max}$, the R-squared in a hypothetical long regression that includes the unobservable confounder and all observable controls. In this paper I propose and implement a novel algorithm to compute roots of the cubic equation over relevant regions of the $\delta$-$R_{max}$ plane and use the roots to construct bounding sets for the true treatment effect. The algorithm is based on two well-known mathematical results: (a) the discriminant of the cubic equation can be used to demarcate regions of unique real roots from regions of three real roots, and (b) a small change in the coefficients of a polynomial equation will lead to small change in its roots because the latter are continuous functions of the former. I illustrate my method by applying it to the analysis of maternal behavior on child outcomes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH