Correcting Attrition Bias using Changes-in-Changes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dalia Ghanem, Sarojini Hirshleifer, Désiré Kédagni, Karen Ortiz-Becerra

Ngôn ngữ: eng

Ký hiệu phân loại: 303.48 Causes of change

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194769

Attrition is a common and potentially important threat to internal validity in treatment effect studies. We extend the changes-in-changes approach to identify the average treatment effect for respondents and the entire study population in the presence of attrition. Our method, which exploits baseline outcome data, can be applied to randomized experiments as well as quasi-experimental difference-in-difference designs. A formal comparison highlights that while widely used corrections typically impose restrictions on whether or how response depends on treatment, our proposed attrition correction exploits restrictions on the outcome model. We further show that the conditions required for our correction can accommodate a broad class of response models that depend on treatment in an arbitrary way. We illustrate the implementation of the proposed corrections in an application to a large-scale randomized experiment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH