Estimating Nonlinear Network Data Models with Fixed Effects

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David W Hughes

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 194807

I introduce a new method for bias correction of dyadic models with agent-specific fixed-effects, including the dyadic link formation model with homophily and degree heterogeneity. The proposed approach uses a jackknife procedure to deal with the incidental parameters problem. The method can be applied to both directed and undirected networks, allows for non-binary outcome variables, and can be used to bias correct estimates of average effects and counterfactual outcomes. I also show how the jackknife can be used to bias-correct fixed effect averages over functions that depend on multiple nodes, e.g. triads or tetrads in the network. As an example, I implement specification tests for dependence across dyads, such as reciprocity or transitivity. Finally, I demonstrate the usefulness of the estimator in an application to a gravity model for import/export relationships across countries.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH