Approximate Group Fairness for Clustering

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bo Li, Lijun Li, Ankang Sun, Chenhao Wang, Yingfan Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194823

Comment: Appears in ICML 2021We incorporate group fairness into the algorithmic centroid clustering problem, where $k$ centers are to be located to serve $n$ agents distributed in a metric space. We refine the notion of proportional fairness proposed in [Chen et al., ICML 2019] as {\em core fairness}, and $k$-clustering is in the core if no coalition containing at least $n/k$ agents can strictly decrease their total distance by deviating to a new center together. Our solution concept is motivated by the situation where agents are able to coordinate and utilities are transferable. A string of existence, hardness and approximability results is provided. Particularly, we propose two dimensions to relax core requirements: one is on the degree of distance improvement, and the other is on the size of deviating coalition. For both relaxations and their combination, we study the extent to which relaxed core fairness can be satisfied in metric spaces including line, tree and general metric space, and design approximation algorithms accordingly.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH