Stability of heteroclinic cycles: a new approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Telmo Peixe, Alexandre A Rodrigues

Ngôn ngữ: eng

Ký hiệu phân loại: 523.26 Specific celestial bodies and phenomena

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194852

Comment: 47 pages, 15 figuresThis paper analyses the stability of cycles within a heteroclinic network lying in a three-dimensional manifold formed by six cycles, for a one-parameter model developed in the context of game theory. We show the asymptotic stability of the network for a range of parameter values compatible with the existence of an interior equilibrium and we describe an asymptotic technique to decide which cycle (within the network) is visible in numerics. The technique consists of reducing the relevant dynamics to a suitable one-dimensional map, the so called \emph{projective map}. Stability of the fixed points of the projective map determines the stability of the associated cycles. The description of this new asymptotic approach is applicable to more general types of networks and is potentially useful in computational dynamics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH