Tuning Parameter-Free Nonparametric Density Estimation from Tabulated Summary Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ji Hyung Lee, Yuya Sasaki, Alexis Akira Toda, Yulong Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194908

Administrative data are often easier to access as tabulated summaries than in the original format due to confidentiality concerns. Motivated by this practical feature, we propose a novel nonparametric density estimation method from tabulated summary data based on maximum entropy and prove its strong uniform consistency. Unlike existing kernel-based estimators, our estimator is free from tuning parameters and admits a closed-form density that is convenient for post-estimation analysis. We apply the proposed method to the tabulated summary data of the U.S. tax returns to estimate the income distribution.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH