Learning Probability Distributions in Macroeconomics and Finance

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jozef Barunik, Lubos Hanus

Ngôn ngữ: eng

Ký hiệu phân loại: 372.79 Elementary education

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194932

We propose a deep learning approach to probabilistic forecasting of macroeconomic and financial time series. Being able to learn complex patterns from a data rich environment, our approach is useful for a decision making that depends on uncertainty of large number of economic outcomes. Specifically, it is informative to agents facing asymmetric dependence of their loss on outcomes from possibly non-Gaussian and non-linear variables. We show the usefulness of the proposed approach on the two distinct datasets where a machine learns the pattern from data. First, we construct macroeconomic fan charts that reflect information from high-dimensional data set. Second, we illustrate gains in prediction of stock return distributions which are heavy tailed, asymmetric and suffer from low signal-to-noise ratio.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH