Nonlinear and Nonseparable Structural Functions in Fuzzy Regression Discontinuity Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Haitian Xie

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194948

Many empirical examples of regression discontinuity (RD) designs concern a continuous treatment variable, but the theoretical aspects of such models are less studied. This study examines the identification and estimation of the structural function in fuzzy RD designs with a continuous treatment variable. The structural function fully describes the causal impact of the treatment on the outcome. We show that the nonlinear and nonseparable structural function can be nonparametrically identified at the RD cutoff under shape restrictions, including monotonicity and smoothness conditions. Based on the nonparametric identification equation, we propose a three-step semiparametric estimation procedure and establish the asymptotic normality of the estimator. The semiparametric estimator achieves the same convergence rate as in the case of a binary treatment variable. As an application of the method, we estimate the causal effect of sleep time on health status by using the discontinuity in natural light timing at time zone boundaries.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH