From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Oliver Grothe, Fabian Kächele, Fabian Krüger

Ngôn ngữ: eng

Ký hiệu phân loại: 551.63 Weather forecasting and forecasts, reporting and reports

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 194963

Modeling price risks is crucial for economic decision making in energy markets. Besides the risk of a single price, the dependence structure of multiple prices is often relevant. We therefore propose a generic and easy-to-implement method for creating multivariate probabilistic forecasts based on univariate point forecasts of day-ahead electricity prices. While each univariate point forecast refers to one of the day's 24 hours, the multivariate forecast distribution models dependencies across hours. The proposed method is based on simple copula techniques and an optional time series component. We illustrate the method for five benchmark data sets recently provided by Lago et al. (2020). Furthermore, we demonstrate an example for constructing realistic prediction intervals for the weighted sum of consecutive electricity prices, as, e.g., needed for pricing individual load profiles.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH