GMM is Inadmissible Under Weak Identification

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Isaiah Andrews, Anna Mikusheva

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195001

We consider estimation in moment condition models and show that under any bound on identification strength, asymptotically admissible (i.e. undominated) estimators in a wide class of estimation problems must be uniformly continuous in the sample moment function. GMM estimators are in general discontinuous in the sample moments, and are thus inadmissible. We show, by contrast, that bagged, or bootstrap aggregated, GMM estimators as well as quasi-Bayes posterior means have superior continuity properties, while results in the literature imply that they are equivalent to GMM when identification is strong. In simulations calibrated to published instrumental variables specifications, we find that these alternatives often outperform GMM.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH