Policy Choice in Time Series by Empirical Welfare Maximization

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Toru Kitagawa, Weining Wang, Mengshan Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 330.1556 Systems, schools, theories

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195102

This paper develops a novel method for policy choice in a dynamic setting where the available data is a multi-variate time series. Building on the statistical treatment choice framework, we propose Time-series Empirical Welfare Maximization (T-EWM) methods to estimate an optimal policy rule by maximizing an empirical welfare criterion constructed using nonparametric potential outcome time series. We characterize conditions under which T-EWM consistently learns a policy choice that is optimal in terms of conditional welfare given the time-series history. We derive a nonasymptotic upper bound for conditional welfare regret. To illustrate the implementation and uses of T-EWM, we perform simulation studies and apply the method to estimate optimal restriction rules against Covid-19.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH