A Robust Permutation Test for Subvector Inference in Linear Regressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xavier D'Haultfœuille, Purevdorj Tuvaandorj

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 195140

Comment: 71 pages. Minor changes compared to v2We develop a new permutation test for inference on a subvector of coefficients in linear models. The test is exact when the regressors and the error terms are independent. Then, we show that the test is asymptotically of correct level, consistent and has power against local alternatives when the independence condition is relaxed, under two main conditions. The first is a slight reinforcement of the usual absence of correlation between the regressors and the error term. The second is that the number of strata, defined by values of the regressors not involved in the subvector test, is small compared to the sample size. The latter implies that the vector of nuisance regressors is discrete. Simulations and empirical illustrations suggest that the test has good power in practice if, indeed, the number of strata is small compared to the sample size.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH