Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Todd S Braver, Gang Chen, Ruiqi Chen, Michael C Freund

Ngôn ngữ: eng

Ký hiệu phân loại: 636.0885 Animal husbandry

Thông tin xuất bản: United States : Imaging neuroscience (Cambridge, Mass.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 195244

Understanding individual differences in cognitive control is a central goal in psychology and neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity. While prior work has pinpointed the source of the issue-the vast amount of cross-trial variability within these measures-solutions remain elusive. Here, we propose one potential way forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive Control project, we estimated individuals' neural responses associated with cognitive control within a color-word Stroop task, then assessed the reliability of these individuals' responses across a time interval of several months. We show that in many prefrontal and parietal brain regions, test-retest reliability was near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to be estimated with significantly greater precision. We specifically link these improvements in precision to the optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that cognitive control-related neural responses individuate people in a highly stable manner across time, but also suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating individual differences in cognitive control, one that can effectively address the issue of high-variability measures.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH