Regulating Matching Markets with Constraints: Data-driven Taxation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kei Ikegami, Atsushi Iwasaki, Akira Matsushita, Kyohei Okumura, Yoji Tomita

Ngôn ngữ: eng

Ký hiệu phân loại: 336.2 Taxes

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195281

This paper develops a framework to conduct a counterfactual analysis to regulate matching markets with regional constraints that impose lower and upper bounds on the number of matches in each region. Our work is motivated by the Japan Residency Matching Program, in which the policymaker wants to guarantee the least number of doctors working in rural regions to achieve the minimum standard of service. Among the multiple possible policies that satisfy such constraints, a policymaker wants to choose the best. To this end, we develop a discrete choice model approach that estimates the utility functions of agents from observed data and predicts agents' behavior under different counterfactual policies. Our framework also allows the policymaker to design the welfare-maximizing tax scheme, which outperforms the policy currently used in practice. Furthermore, a numerical experiment illustrates how our method works.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH