Machine Learning Inference on Inequality of Opportunity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Juan Carlos Escanciano, Joël Robert Terschuur

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195412

 Equality of opportunity has emerged as an important ideal of distributive justice. Empirically, Inequality of Opportunity (IOp) is measured in two steps: first, an outcome (e.g., income) is predicted given individual circumstances
  and second, an inequality index (e.g., Gini) of the predictions is computed. Machine Learning (ML) methods are tremendously useful in the first step. However, they can cause sizable biases in IOp since the bias-variance trade-off allows the bias to creep in the second step. We propose a simple debiased IOp estimator robust to such ML biases and provide the first valid inferential theory for IOp. We demonstrate improved performance in simulations and report the first unbiased measures of income IOp in Europe. Mother's education and father's occupation are the circumstances that explain the most. Plug-in estimators are very sensitive to the ML algorithm, while debiased IOp estimators are robust. These results are extended to a general U-statistics setting.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH