A new algorithm for structural restrictions in Bayesian vector autoregressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dimitris Korobilis

Ngôn ngữ: eng

Ký hiệu phân loại: 005.116 +*Constraint programming

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 195439

A comprehensive methodology for inference in vector autoregressions (VARs) using sign and other structural restrictions is developed. The reduced-form VAR disturbances are driven by a few common factors and structural identification restrictions can be incorporated in their loadings in the form of parametric restrictions. A Gibbs sampler is derived that allows for reduced-form parameters and structural restrictions to be sampled efficiently in one step. A key benefit of the proposed approach is that it allows for treating parameter estimation and structural inference as a joint problem. An additional benefit is that the methodology can scale to large VARs with multiple shocks, and it can be extended to accommodate non-linearities, asymmetries, and numerous other interesting empirical features. The excellent properties of the new algorithm for inference are explored using synthetic data experiments, and by revisiting the role of financial factors in economic fluctuations using identification based on sign restrictions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH