Reinforcement Learning for Economic Policy: A New Frontier?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Callum Rhys Tilbury

Ngôn ngữ: eng

Ký hiệu phân loại: 330 Economics

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195454

Agent-based computational economics is a field with a rich academic history, yet one which has struggled to enter mainstream policy design toolboxes, plagued by the challenges associated with representing a complex and dynamic reality. The field of Reinforcement Learning (RL), too, has a rich history, and has recently been at the centre of several exponential developments. Modern RL implementations have been able to achieve unprecedented levels of sophistication, handling previously unthinkable degrees of complexity. This review surveys the historical barriers of classical agent-based techniques in economic modelling, and contemplates whether recent developments in RL can overcome any of them.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH