Unbiased estimation of the OLS covariance matrix when the errors are clustered

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tom Boot, Gianmaria Niccodemi, Tom Wansbeek

Ngôn ngữ: eng

Ký hiệu phân loại: 526.5 Mathematical geography

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195471

When data are clustered, common practice has become to do OLS and use an estimator of the covariance matrix of the OLS estimator that comes close to unbiasedness. In this paper we derive an estimator that is unbiased when the random-effects model holds. We do the same for two more general structures. We study the usefulness of these estimators against others by simulation, the size of the $t$-test being the criterion. Our findings suggest that the choice of estimator hardly matters when the regressor has the same distribution over the clusters. But when the regressor is a cluster-specific treatment variable, the choice does matter and the unbiased estimator we propose for the random-effects model shows excellent performance, even when the clusters are highly unbalanced.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH