Two-stage differences in differences

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: John Gardner

Ngôn ngữ: eng

Ký hiệu phân loại: 571.876 +Development in distinct stages

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195559

A recent literature has shown that when adoption of a treatment is staggered and average treatment effects vary across groups and over time, difference-in-differences regression does not identify an easily interpretable measure of the typical effect of the treatment. In this paper, I extend this literature in two ways. First, I provide some simple underlying intuition for why difference-in-differences regression does not identify a group$\times$period average treatment effect. Second, I propose an alternative two-stage estimation framework, motivated by this intuition. In this framework, group and period effects are identified in a first stage from the sample of untreated observations, and average treatment effects are identified in a second stage by comparing treated and untreated outcomes, after removing these group and period effects. The two-stage approach is robust to treatment-effect heterogeneity under staggered adoption, and can be used to identify a host of different average treatment effect measures. It is also simple, intuitive, and easy to implement. I establish the theoretical properties of the two-stage approach and demonstrate its effectiveness and applicability using Monte-Carlo evidence and an example from the literature.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH