Conformal Prediction Bands for Two-Dimensional Functional Time Series

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Niccolò Ajroldi, Jacopo Diquigiovanni, Matteo Fontana, Simone Vantini

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195582

Time evolving surfaces can be modeled as two-dimensional Functional time series, exploiting the tools of Functional data analysis. Leveraging this approach, a forecasting framework for such complex data is developed. The main focus revolves around Conformal Prediction, a versatile nonparametric paradigm used to quantify uncertainty in prediction problems. Building upon recent variations of Conformal Prediction for Functional time series, a probabilistic forecasting scheme for two-dimensional functional time series is presented, while providing an extension of Functional Autoregressive Processes of order one to this setting. Estimation techniques for the latter process are introduced and their performance are compared in terms of the resulting prediction regions. Finally, the proposed forecasting procedure and the uncertainty quantification technique are applied to a real dataset, collecting daily observations of Sea Level Anomalies of the Black Sea
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH