Finite Tests from Functional Characterizations

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Charles Gauthier, Raghav Malhotra, Agustin Troccoli Moretti

Ngôn ngữ: eng

Ký hiệu phân loại: 515.7 Functional analysis

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195603

Classically, testing whether decision makers belong to specific preference classes involves two main approaches. The first, known as the functional approach, assumes access to an entire demand function. The second, the revealed preference approach, constructs inequalities to test finite demand data. This paper bridges these methods by using the functional approach to test finite data through preference learnability results. We develop a computationally efficient algorithm that generates tests for choice data based on functional characterizations of preference families. We provide these restrictions for various applications, including homothetic and weakly separable preferences, where the latter's revealed preference characterization is provably NP-Hard. We also address choice under uncertainty, offering tests for betweenness preferences. Lastly, we perform a simulation exercise demonstrating that our tests are effective in finite samples and accurately reject demands not belonging to a specified class.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH