Large-Scale Allocation of Personalized Incentives

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andrea Araldo, André de Palma, Lucas Javaudin

Ngôn ngữ: eng

Ký hiệu phân loại: 650.1 Personal success in business

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195840

We consider a regulator willing to drive individual choices towards increasing social welfare by providing incentives to a large population of individuals. For that purpose, we formalize and solve the problem of finding an optimal personalized-incentive policy: optimal in the sense that it maximizes social welfare under an incentive budget constraint, personalized in the sense that the incentives proposed depend on the alternatives available to each individual, as well as her preferences. We propose a polynomial time approximation algorithm that computes a policy within few seconds and we analytically prove that it is boundedly close to the optimum. We then extend the problem to efficiently calculate the Maximum Social Welfare Curve, which gives the maximum social welfare achievable for a range of incentive budgets (not just one value). This curve is a valuable practical tool for the regulator to determine the right incentive budget to invest. Finally, we simulate a large-scale application to mode choice in a French department (about 200 thousands individuals) and illustrate the effectiveness of the proposed personalized-incentive policy in reducing CO2 emissions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH