Exploring the mechanism of action of Lobetyolin in the treatment of allergic rhinitis based on network pharmacology and molecular docking.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Li Hou, Jing Kang, Yanrong Li, Xiaoya Luo, Zheng Ma, Hui Shao, Jing Yang, Xiaoling Yang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 195875

Lobetyolin (LBT) is an important active ingredient in the traditional medicinal plant Codonopsis pilosula (Franch.) Nannf. However, the pharmacological targets and mechanisms of action of LBT against allergic rhinitis (AR) are not known. The aim of this study was to evaluate the possible functional role and potential mechanism of LBT as an anti-AR treatment through a combination of network pharmacology and molecular docking. The disease database and target screening database were used to find potential targets for screening LBT for the treatment of AR. Further network visualization analysis, gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed for potential targets. Finally, we performed some molecular docking with LBT and core targets to verify their relevant effects. The results revealed that a total of 64 target genes were obtained for LBT for AR. The top 10 targets with the highest enrichment scores were tumor necrosis factor, epidermal growth factor receptor, matrix metalloproteinase 9, recombinant toll-like receptor 4, erb-b2 receptor tyrosine kinase 2, JUN protooncogene, C-X-C motif chemokine receptor 4, HSP90AA1, kinase insert domain receptor, and matrix metalloproteinase 2. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that multiple signaling pathways are involved in LBT for AR. Molecular docking results showed that LBT binds strongly to the target proteins matrix metalloproteinase 2, matrix metalloproteinase 9, tumor necrosis factor, JUN protooncogene, and epidermal growth factor receptor through intermolecular forces. This study reveals for the first time the pharmacological targets and related pathways of LBT for the treatment of AR, indicating that LBT can intervene in the intrinsic molecular mechanism of AR through multiple targets and pathways.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH