Empirical Bayes Selection for Value Maximization

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dominic Coey, Kenneth Hung

Ngôn ngữ: eng

Ký hiệu phân loại: 003.56 Decision theory

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195888

We study the problem of selecting the best $m$ units from a set of $n$ as $m / n \to \alpha \in (0, 1)$, where noisy, heteroskedastic measurements of the units' true values are available and the decision-maker wishes to maximize the average true value of the units selected. Given a parametric prior distribution, the empirical Bayes decision rule incurs $O_p(n^{-1})$ regret relative to the Bayesian oracle that knows the true prior. More generally, if the error in the estimated prior is of order $O_p(r_n)$, regret is $O_p(r_n^2)$. In this sense selecting the best units is easier than estimating their values. We show this regret bound is sharp in the parametric case, by giving an example in which it is attained. Using priors calibrated from a dataset of over four thousand internet experiments, we find that empirical Bayes methods perform well in practice for detecting the best treatments given only a modest number of experiments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH