Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kazuhiko Kakamu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195902

This study proposes a reversible jump Markov chain Monte Carlo method for estimating parameters of lognormal distribution mixtures for income. Using simulated data examples, we examined the proposed algorithm's performance and the accuracy of posterior distributions of the Gini coefficients. Results suggest that the parameters were estimated accurately. Therefore, the posterior distributions are close to the true distributions even when the different data generating process is accounted for. Moreover, promising results for Gini coefficients encouraged us to apply our method to real data from Japan. The empirical examples indicate two subgroups in Japan (2020) and the Gini coefficients' integrity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH