Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic Treatment Regime

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anish Agarwal, Vasilis Syrgkanis

Ngôn ngữ: eng

Ký hiệu phân loại: 571.74 Biochemistry of control

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195945

We propose a generalization of the synthetic control and synthetic interventions methodology to the dynamic treatment regime. We consider the estimation of unit-specific treatment effects from panel data collected via a dynamic treatment regime and in the presence of unobserved confounding. That is, each unit receives multiple treatments sequentially, based on an adaptive policy, which depends on a latent endogenously time-varying confounding state of the treated unit. Under a low-rank latent factor model assumption and a technical overlap assumption we propose an identification strategy for any unit-specific mean outcome under any sequence of interventions. The latent factor model we propose admits linear time-varying and time-invariant dynamical systems as special cases. Our approach can be seen as an identification strategy for structural nested mean models under a low-rank latent factor assumption on the blip effects. Our method, which we term "synthetic blip effects", is a backwards induction process, where the blip effect of a treatment at each period and for a target unit is recursively expressed as linear combinations of blip effects of a carefully chosen group of other units that received the designated treatment. Our work avoids the combinatorial explosion in the number of units that would be required by a vanilla application of prior synthetic control and synthetic intervention methods in such dynamic treatment regime settings.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH