Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaolin Sun

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 195976

We propose a new estimator for heterogeneous treatment effects in a partially linear model (PLM) with multiple exogenous covariates and a potentially endogenous treatment variable. Our approach integrates a Robinson transformation to handle the nonparametric component, the Smooth Minimum Distance (SMD) method to leverage conditional mean independence restrictions, and a Neyman-Orthogonalized first-order condition (FOC). By employing regularized model selection techniques like the Lasso method, our estimator accommodates numerous covariates while exhibiting reduced bias, consistency, and asymptotic normality. Simulations demonstrate its robust performance with diverse instrument sets compared to traditional GMM-type estimators. Applying this method to estimate Medicaid's heterogeneous treatment effects from the Oregon Health Insurance Experiment reveals more robust and reliable results than conventional GMM approaches.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH