Incorporating High-Frequency Weather Data into Consumption Expenditure Predictions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Simón Ramírez Amaya, Anders Christensen, Joel Ferguson

Ngôn ngữ: eng

Ký hiệu phân loại: 551.63 Weather forecasting and forecasts, reporting and reports

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196020

Recent efforts have been very successful in accurately mapping welfare in datasparse regions of the world using satellite imagery and other non-traditional data sources. However, the literature to date has focused on predicting a particular class of welfare measures, asset indices, which are relatively insensitive to short term fluctuations in well-being. We suggest that predicting more volatile welfare measures, such as consumption expenditure, substantially benefits from the incorporation of data sources with high temporal resolution. By incorporating daily weather data into training and prediction, we improve consumption prediction accuracy significantly compared to models that only utilize satellite imagery.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH