Extreme Changes in Changes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuya Sasaki, Yulong Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 303.48 Causes of change

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196103

Policy analysts are often interested in treating the units with extreme outcomes, such as infants with extremely low birth weights. Existing changes-in-changes (CIC) estimators are tailored to middle quantiles and do not work well for such subpopulations. This paper proposes a new CIC estimator to accurately estimate treatment effects at extreme quantiles. With its asymptotic normality, we also propose a method of statistical inference, which is simple to implement. Based on simulation studies, we propose to use our extreme CIC estimator for extreme, such as below 5% and above 95%, quantiles, while the conventional CIC estimator should be used for intermediate quantiles. Applying the proposed method, we study the effects of income gains from the 1993 EITC reform on infant birth weights for those in the most critical conditions. This paper is accompanied by a Stata command.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH