Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jean-Jacques Forneron

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196372

A practical challenge for structural estimation is the requirement to accurately minimize a sample objective function which is often non-smooth, non-convex, or both. This paper proposes a simple algorithm designed to find accurate solutions without performing an exhaustive search. It augments each iteration from a new Gauss-Newton algorithm with a grid search step. A finite sample analysis derives its optimization and statistical properties simultaneously using only econometric assumptions. After a finite number of iterations, the algorithm automatically transitions from global to fast local convergence, producing accurate estimates with high probability. Simulated examples and an empirical application illustrate the results.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH